Polylogarithm
WebThe Wolfram Language supports zeta and polylogarithm functions of a complex variable in full generality, performing efficient arbitrary-precision evaluation and implementing extensive symbolic transformations. Zeta — Riemann and generalized Riemann zeta function. RiemannSiegelZ RiemannSiegelTheta StieltjesGamma RiemannXi. WebInformally, a cluster polylogarithm is a homotopy-invariant iterated integral ż γ ÿ i “ dlogpai 1q ... dlogpai nq ‰ on XsmpCq where for each ithere exists a cluster containing cluster variables ai 1,...,a i n. We call the latter condition cluster adjacency, it was inspired by [DFG18]. Consider the following simplest example.
Polylogarithm
Did you know?
WebThis function is defined in analogy with the Riemann zeta function as providing the sum of the alternating series. η ( s) = ∑ k = 0 ∞ ( − 1) k k s = 1 − 1 2 s + 1 3 s − 1 4 s + …. The eta … WebPolylogarithms of Numeric and Symbolic Arguments. polylog returns floating-point numbers or exact symbolic results depending on the arguments you use. Compute the …
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the … See more In the case where the order $${\displaystyle s}$$ is an integer, it will be represented by $${\displaystyle s=n}$$ (or $${\displaystyle s=-n}$$ when negative). It is often convenient to define Depending on the … See more • For z = 1, the polylogarithm reduces to the Riemann zeta function Li s ( 1 ) = ζ ( s ) ( Re ( s ) > 1 ) . {\displaystyle \operatorname {Li} … See more 1. As noted under integral representations above, the Bose–Einstein integral representation of the polylogarithm may be extended to negative orders s by means of See more The dilogarithm is the polylogarithm of order s = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument z is (Abramowitz & Stegun 1972, § 27.7): See more For particular cases, the polylogarithm may be expressed in terms of other functions (see below). Particular values for the polylogarithm may thus also be found as particular … See more Any of the following integral representations furnishes the analytic continuation of the polylogarithm beyond the circle of convergence z = 1 of the defining power series. 1. The polylogarithm can be expressed in terms of the integral … See more For z ≫ 1, the polylogarithm can be expanded into asymptotic series in terms of ln(−z): where B2k are the See more WebThe polylogarithm function is an important function for integration, and finding seemingly complicated sum. Polylogarithm is connected to the infinite geometric progression sum ...
WebMay 18, 2009 · The nth order polylogarithm Li n (z) is defined for z ≦ 1 by ([4, p. 169], cf. [2, §1. 11 (14) and § 1. 11. 1]). The definition can be extended to all values of z in the z … Webnthe weight (or transcendentality) of the polylogarithm. Multiple polylogarithms de ned as power series Li n 1;:::;n k(x1;:::;x k) = X 1 p 1<:::
Webpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic integral function.. Floating-point evaluation of the polylogarithm function can be slow for complex arguments or high-precision numbers.
Webs(z) resembles the Dirichlet series for the polylogarithm function Li s(z). Nice reviews of the theory of such functions are given by Lewin [2,19] and Berndt [10]. Cvijović published integral representations of the Legendre chi functio [20], which are thus likely to provide, via χ 2(z), expressions for Li 2(z)−Li 2(−z). 4 Conclusion how did our galaxy get the name milky wayWebDifferentiation (12 formulas) PolyLog. Zeta Functions and Polylogarithms PolyLog[nu,z] how many slides per minute in a presentationWebThe polylogarithm function, Li p(z), is defined, and a number of algorithms are derived for its computation, valid in different ranges of its real parameter p and complex argument z. These are sufficient to evaluate it numerically, with reasonable efficiency, in all cases. 1. Definition The polylogarithm may be defined as the function Li p ... how did our moon formWeb, when s 1, … , s k are positive integers and z a complex number in the unit disk. For k = 1, this is the classical polylogarithm Li s (z).These multiple polylogarithms can be defined also in terms of iterated Chen integrals and satisfy shuffle relations.Multiple polylogarithms in several variables are defined for s i ≥ 1 and z i < 1(1 ≤ i ≤ k) by how did our planet formWebThe polylogarithm , also known as the Jonquière's function, is the function. (1) defined in the complex plane over the open unit disk. Its definition on the whole complex plane then … how did overgrazing help the fall of ghanaWebpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic … how did our government help families of ofwWebJun 26, 2015 · Polylogarithm ladders provide the basis for the rapid computations of various mathematical constants by means of the BBP algorithm (Bailey, Borwein & Plouffe 1997)), monodromy group for the polylogarithm (Heisenberg group) Share. Improve this … how did outbyte get on my computer